Name:	P	Period:

Wave Research and Demonstrations by Expert Groups

You will only have five minutes to research and prepare your presentation. Use your textbook (<u>Sound and Light</u>, pp. 6–15) or other research to address the concept(s) assigned to your team. As the expert(s), you will then share your research using a demonstration to explain the concepts so others understand them as well as you do. You will also need to be prepared to answer clarifying questions.

Complete the **Review** section on your own to check for your understanding.

	What is a Wave?	
A wave is a	that transfers	from
place to place.		
Energy is the ability to do)	
tap on the water at one er goes up and down with t	rubber duck (or other floating object) in the center and with a pencil twice a second for 30 seconds. Pointhe waves but does not travel with the wave. This ving the object, or doing work.	nt out how the object
Explain how the demonst	tration is related to the statements above it.	
	What Carries Waves?	
	waves need something to travel through.	
The	that a wave travels through is called a	·
Waves that require a	are called	
waves.		

Demonstration: Say a phrase so a partner can hear you. Ask: What medium is the wave traveling through? Ask students to place an ear to the desk, and then to tap on the desk with a hand. Ask: What is the medium that the wave traveled through? Gently tap the water surface. Ask: What is the medium the wave traveled through?

Explain how the demonstration is related to the statements above it.

				How Do				00				
The wave				_ carry tl	ne med	ium w	ith it. T	The m	edium is	made of	tiny pa	rticles.
The wave												
particles	bump	into	each	other.	This	cause	s the					to
				from	one pa	rticle t	o the ne	ext.				
Demonstrate the energy stayed wh	(up an ere the	d dow y were	n move . Desci	ement) n ribe how	noved t this de	hrougl monst	n the me ration re	edium elates	, but that to the firs	the stude	ents (pai	rticles)
Explain in	ow the	uemon	suano	ii is iciai	cu to ti	ie state	inents a	ibove	11.			
				V	Vhat C	auses	Waves?	?				
Mechanic	al wa	ves	are p	roduced	wher	n a	source	of	energy	causes	a m	ıedium
to												
A vibratio	on is a r	epeate	d		and	l			or up a	and down	motion	1.
Demonst iprocedure vibrations	s with s											
Explain h	ow the	demon	stratio	n is relat	ed to th	ne state	ements a	ibove	it.			
					Trans	verse \	Waves					
A transve	erse w	ave ir	whic	h the d	lirection	n that	the _			is	travel	ling is
			t	o the dir	ection t	he				is	moving	g.
A Draw and compared	label d	iagran	n of a t	ransverse	e wave	and la	bel the o	direct	ion the wa		es the m	nedium
Res	t Position											

Demonstration: With a partner, lay out a rope on the floor (leave some slack) and then have one partner flick it (move it to the left and right) one time per second. Point out the direction the <u>wave moves the medium</u> (rope) <u>compared</u> to the <u>direction that the wave travels</u> along the rope.

		Name:	Period:
Èx	ontinued from Transverse plain how the demonstration of the new terms needed to under	on on the previous page is related to	the statements above it. Explain
In	a <i>longitudinal</i> wav	Longitudinal Waves e, the wave is traveling	in a direction that is
		to the direction of the medium.	
Α.		is an example of a longitudina	l wave.
	_	a longitudinal wave and label the ction the wave travels. (Source: Source	
	Rest Position		
spi coi (sp	ring straight forward repeated its toward one end and the	ner, stretch out and hold a spring. G tedly one time per second. One parts in let them go. Point out the direction ction that the wave moves along the spring.	ner could also gently pull a few on the wave moves the medium
	plain how the demonstrated ded to understand the con-	ion is related to the statements aborept.	ove it. Explain any new terms
		All Groups: Review Parts of a Wa	ve
1.		part of a transver	
2.	Trough: The	part of a tra	ansverse wave.
3.	-	ion of the medium th the entire wavelength, half-way be	•
4.		ongitudinal wave where the particles	
	•	agitudinal wave where the particles a	_
		f each type of wave. (Source: Sound	
Cł	• A	properties that all waves share? (Hi	nt: You are given the first letter.)
	• W	- C	

Amplitude

<i>Amplitude</i> is the r	naximum distance the parti	cles of a medium move _		from
their	_ position.			
In a <u>transverse</u> wa	eve, the amplitude is the		_ of the wave	from
the				
one partner flich	: With a partner, stretch out k it (move it to the left and r end moves from the rest po	ight, or up and down) one ti	me per second.	Increase
In a longitudinal	wave, the amplitude is mea	sured by how		or
	the medium l	pecomes.		
coils toward one the spring to she *Be careful not to overstretch	e end and then let them go. It where the wave has the go and tangle the spring. It transverse waves and two lets.	Point out where the springs reatest amplitude.	are compressed	along
Rest Position				_
Rest Position				
	Wave	elength		
A wavelength is the	e	from one point on a wa	ave to the same	point
on the	wave. It is the distan	ce from to _		on a
transverse wave, or	the distance from the begin	ning of one		to the
beginning of the ne	xt	on a longitudinal way	ve.	
point out one w longitudinal wave part of the spring *Be careful not to overstretch	transverse waves and two le	arrange a spring on the ngth. This may require one	floor to repres partner "pullin	sent a g" on
Rest Position				_
Rest Position				

	Name:	Period:
	Frequenc	ey
amount ofunits describing the number of wa	Frequer	that pass a given point in a certain acy is measured in hertz (Hz), which are the teach second: Hertz = waves/ second.
For example, $1 \text{ wave/1second} = 1$	Hz, 2 waves/1 seco	ond = Hz
one partner gently and slowly per second. To increase the f	y flick it (move it trequency, increase	pe (leave some slack) by its ends and then have to the left and right, or up and down) one time the rate at which the end moves from the re- per second, but do not increase the amplitude
What is the frequency if 4 crests p	oass you in one seco	ond?
Draw and label <u>two</u> <i>transverse</i> w the <u>same amplitude</u> .	aves and <u>two</u> <i>longi</i>	itudinal waves with different frequencies but
Rest Position		
Rest Position		
Describe what happened to the wa	avelength as you in	creased the frequency.
	Speed	
-		re to travel a certain
The speed of a wave will		when it passes through a different
 Speed =	X	
Demonstration : Repeat the	demonstration fron	n above and point out how when the frequenc

Describe what happens to the speed of a wave if the frequency remains the same, but the wavelength increases.

is increased, the speed increases. Keep the amplitude unchanged. Repeat, but decrease the rate.

Summary Questions

1.	Describe the relationship, if any, between the <u>energy</u> a wave has and its <u>amplitude</u> (<i>Hint: The distance that you needed to move your hand from the rest position</i>).
2.	Describe the relationship, if any, between <u>wavelength</u> and <u>amplitude</u> . Include a labeled diagram to support your answer. (<i>Hint: Is it possible to change one but not the other?</i>)
3.	Describe the relationship, if any, between <u>frequency</u> and <u>amplitude</u> . Include a labeled diagram to support your answer. (<i>Hint: Is it possible to change one but not the other?</i>)
4.	Describe the relationship, if any, between <u>frequency</u> and <u>wavelength</u> . Include a labeled diagram to support your answer. (<i>Hint: Is it possible to change one but not the other or is it more complicated than that?</i>)